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3 times compared to 2014. The results obtained are 
the basis for a more detailed study of the horizons of 
geochemical accumulation and the creation of artifi-
cial geochemical barriers with the development of 
technologies for the subsequent extraction of useful 
components.
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Introduction

On the territory of Yakutia, five commercial dia-
mond-bearing kimberlite fields are grouped within 
the central part of the Siberian craton: Malobotuob-
insky, Nakynsky, Daldynsky, Alakit-Markhinsky, 
and Verkhnemunsky. Intensive development of 
open fields using high-power machinery and min-
ing equipment inevitably leads to a violation of the 
natural landscape, the water regime of rivers, and, 
as a result, the formation of vast areas with techno-
genically transformed relief. As a rule, during min-
ing operations, the territories adjacent to the deposit 
are polluted; there are centers of erosion; and the 
soil layer is subjected to physical, mechanical, and 
chemical effects. Migration geochemical flows that 
are characterized by high concentrations, including 
heavy metals, extend beyond the limits of the mining 
area (Sorokina & Kiselev, 2005; Liakopoulos et  al., 
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mond mining and processing plant located in the 
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identified that AO, ABcr, and CR are the accumula-
tion horizons if the soil profile is preserved. Mobile 
forms Mn, Zn, Ni, Cr, Co, and As can migrate along 
with the soil profile to a depth of 40–50 cm depend-
ing on the amount of soil organic matter, the degree 
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confirm the increase in the area of contamination of 
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2010; Basova et  al., 2010, 2012; Ismailov, 2011; 
Belosheikina et al., 2020; Sun et al., 2018). The situa-
tion is complicated by the weak resistance of northern 
ecosystems to various forms of anthropogenic activity 
(Volpert & Martynov, 2011). In the northern regions, 
the soil, which is considered a “self-cleaning filter” of 
nature, largely lose their disinfecting properties due 
to the not large thickness of the profile; poor drain-
age annual freezing, which contributes to the con-
centration of pollutants in the soil water; and a short 
period of biological life, as well as the presence of a 
water-resistant rock (confining layer) in the form of 
a suprapermafrost horizon. These features cause low 
stability of cryogenic soils and acceleration of their 
pollution processes in zones of technogenic pres-
sure (Makarov, 2010; Tentyukov, 2013; Gololobova  
& Legostaeva,  2017). Therefore, there is a need to 
assess soil contamination in the cryolithozone that 
is an integral part of complex geoecological research 
that creates a basis for planning measures to reduce 
the consequences of mining ore and placer deposits 
of diamonds in the conditions of cryogenesis.

Overview of the study area

The study area is located in the Republic of Sakha 
(Yakutia), Russia, on the territory of the Nakyn kim-
berlite field, where the Nyurbinsky mining and pro-
cessing plant is situated (Fig. 1).

The analysis of the geoecological situation on the 
territory of the development of primary diamond 
deposits in the Western Yakutia is carried out on the 
example of the industrial site of the Nyurbinsky min-
ing and processing plant based on the generalization 
and interpretation of archived data and the results of 
our own observations in the period 1994 − 2018.

Nakyn field is on the left bank of the Markha 
river in the interfluve of the Nakyn and Khannya; 
it includes highly diamondiferous kimberlite of the 
Botuobinsky pipe (discovered 1994, mining started 
in 2015), Nyurbinsky (discovered 1996, worked 
since 2001), Markhinsky (discovered 1999, mining 
not started), and Maysky (discovered 2006, mining 
not started), followed by buried diamond placers, 
and refers to a site with complex search conditions   

Fig. 1   Location of the study area. (a) Location of the study area on the map of Russia, (b) photo of the Nyurbinsky mining and pro-
cessing plant territory, (c) photo of plant no. 16, (d) Nurbinsky and Botuobinsky open-pits
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(Kilizhekov, 2016, 2017; Tolstov et  al., 2009). All 
formations and magmatic occurrences that host 
kimberlites are processed by the ancient Mesozoic 
weathering crust, karst processes and overlain by a 
thick (from 40 to 100 m or more) cover of the Jurassic 
marine sediments, and accordingly characterized by 
low magnetization intensity (Ignatov et  al.,  2012; 
Korobkov et  al., 2013). In contrast to the deposits 
of Mirninsky and Daldino-Alakitsky districts of the 
western Yakutia, where kimberlites are located close 
to the surface, for example, as at the “Zarnitsa”, “Mir”, 
or “Udachny” pipes. Therefore, to get to the ore body, 
it is necessary to make a removal in the amount of 
about 8 million m3 (Georaphy, 2008).

As a result of such large-scale works, huge areas 
of dumps of removed rocks are formed on the ter-
ritory of the industrial site, which is an additional 
source of dust and various gases emissions. And 
at the stage of ore concentration, storages of liquid 
fraction of pulp containing slags are organized by 
blocking the upper reaches of nearby streams and 
small rivers. During the development of the fields 
of the Nakyn kimberlite field, a natural and techno-
genic system was created, which included two quar-
ries for the extraction of kimberlite ore “Nyurbin-
sky” and “Botuobinsky”: processing plant № 15, 
operating since 1999; geological factory № 17, a 
small factory built on the site in 2007; processing 
plant № 16, put into operation since 2003; a rota-
tion camp for 1000 people; runways; a warehouse 
of explosives materials; and other sources related to 
mining and concentration processes – tailing stor-
age facility, waste dumps, and pulp lines.

The Nakyn kimberlite field is located at the junc-
tion of the Anabar-Olenek anteclise and Viluy syn-
eclise and is confined to the Viluy-Markha kimber-
lite-controlling tectonic zone of deep faults (Gorev 
et  al., 2011). The territory is a flat ground with a 
height difference of no more than 50  m. Relief—
mid-divided plateau.

The sharp continental climate is characterized by 
a long severe winter with minimum temperatures 
in January of – 61,5 °C and a short relatively warm 
summer with maximum temperatures of + 23,8  °C 
in July. The difference in average temperatures 
between the cold and warm seasons is very large 
and is 50 to 600. In summer, light south-east winds 
of 1 to 3 m/s prevail. The main amount of precipita-
tion falls during the summer period, which is up to 

70% of the annual mass. The duration of the frost-
free period increases from 47 to 103  days in the 
north–south direction.

The main feature is the location of the site in the 
permafrost zone, where a sharply continental climate, 
due to thermal shock and the duration of the winter 
period, creates a favorable condition for the preser-
vation and development of the permafrost. In condi-
tions of low relative humidity, high summer tempera-
tures, and insufficient precipitation, summer thawing 
of permafrost contributes to constant soil moisture, 
creating a kind of zone of development of cryogenic 
processes. According to geobotanical zoning, the ter-
ritory under study is included in the middle-taiga and 
north-taiga subzones of the boreal region. They are 
characterized by the development of a tree layer; the 
dominant species are larch Gmelin (Larix gmelinii) 
and Kayandera (L. cajanderi).

Complex geological history of the development 
of the territory of the Nakyn kimberlite field, spe-
cific physical and geographical conditions, continu-
ous distribution of the permafrost predetermined the 
formation of geochemical types of landscapes, which 
stability is an urgent issue today with increasing tech-
nogenic impact. Monitoring of the state of the soil 
cover of an industrial site allows to track changes in 
the geoecological situation in the impact zone of one 
of the most power diamond mining enterprises oper-
ating in the cryolithozone.

Materials and methods

Material survey and sampling

The specificity of any geosystems, including mining 
regions, is shown in the fact that the soil is its basic 
component. Soil cover as the main deposit environ-
ment, to the greatest extent, reflects the scope and 
nature of environmental changes in the anthropogenic 
period (Basova et  al., 2010; Naeth & Wilkinson, 
2014; Sena et al., 2015).

In soil cover of the Khannya-Nakyn interfluve, 
coarse-humus cryogenic soils, peaty cryogenic soils, 
taiga gley cryogenic soils, cryoarid typical, cryo-
humus typical, humic gley cryogenic, and grey-humus 
soils are common. The structure of the soil cover of 
the industrial site of the Nyurbinsky mining and 
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processing plant is dominated by Crysols – 84% of the 
total area, which are characterized by a thin soil pro-
file with distinct cryoturbation processes, that lead to a 
violation of the integrity of genetic horizons and mix-
ing of soil material (Gololobova & Legostaeva, 2019).

On the territory of impact, comprehensive envi-
ronmental monitoring has been carried out since the 
2000s – the initial stage of development of the field 
and ecological and geochemical observations of the 
Khannya-Nakyn interfluve started during the explo-
ration of the Nakyn kimberlite field (1994 to 1998) 
(Yagnyshev et al., 2005).

In 2007, a network of observations was laid evenly 
throughout the site with a sampling step of 2 × 2 km 
on a scale of 1:100, 000 km. Sampling was performed 
at intervals of 3 to 4 years from the surface layer at a 
depth of 0 to 20  cm. In parallel, to characterize the 
soil cover, soil sections were laid in different biotopes 
with horizon sampling for the entire depth of defrost-
ing. In total, 436 soil samples were selected and ana-
lyzed for the period 2007 to 2018. The classification 
of soil types is based on the World Reference Base for 
Soil Resources (2015).

Data determination

All these samples were air-dried at room temperature 
and sieved through a < 1.0-mm sieve to remove coarse 
debris. The soil samples were then ground with a pes-
tle and mortar until all particles passed a 0.25-mm 
sieve. Then, 10 g (± 0.1 g) of soil was taken, ground 
in a mortar to a powder state (ISO 11,464–2015).

The content of mobile forms of elements (Pb, 
Ni, Mn, Cd, Co, Cr, Zn, Cu, and As) in air-dry soil 
samples was determined with an atomic absorption 
spectrophotometer (MGA-915 GC Lumex) by open-
ing the sample 1  N HNO3 (soil to extractant ratio 
1:10) (by the method M 03–07-2014). The studied 
soils are characterized by a low content of organic 
matter (C < 20 g/kg), and according to French (NFX 
31–147 (1996); NF ISO 14,870 (X31-427) 1998; 
NF X 31–151 (1993)) and international (Pr ISO CD 
14,869 (1998); ISO 14,869–1:2001 (2001)) standards 
of nitric acid treatment, as a rule, it is sufficient for 
soils formed in cold regions (Pansu et  al., 2001). In 
addition, in contrast to H2O and 1 N HCl, the extract-
ant − 1 N HNO3 defines the most mobile acid-soluble 

forms of elements that are more strongly bound to the 
soil (Ilyin, 1991; Ladonin, 2002; Syso, 2007).

The ranges of the measured mass fractions of the 
analyzed elements are presented in the Table 1.

To control the accuracy of measuring the concen-
tration of elements in soils, state standard samples of 
soil composition (state standard reference sample) of 
the following series were used: Albic Podzols (SDPC-
1,-2,-3) and Haplic Calcisols (SSC-1,-2,-3). Certified 
values of the mass fraction of chemical elements in 
standard samples are given in the corresponding pub-
lications (Shafrinsky, 1998).

In addition, the pH, organic matter (humus), TN 
(total nitrogen), and PC (physical clay) were deter-
mined using pH meter method (Mettler Toledo, 
SevenCompact Advanced), photoelectric colorimet-
ric method (KFK-2 UHL 4.2), spectrophotometric 
method (PE-5300VI), and pipette method for particle 
size analysis (Kachinsky method), respectively.

Data processing and analysis

The ecological and geochemical characterization of 
soil pollution was carried out according to geochemi-
cal indicators, which take into account the distribu-
tion of both individual metals involved in the pol-
lution and their associations due to the polyelement 
nature of the chemical composition of technogenic 
flows that form the pollution. The concentration fac-
tor (Kc) of chemical elements and the total pollution 
indicator (Zc) are these indicators. The calculation 
formulas are:

Table 1   Ranges of measured mass fractions according to the 
Method M 03–07-2014

Element Measuring range, mg/kg

Whole-rock composi-
tion

Mobile forms

Cd 0,1–400 0,05–400
Co 1–4000 0,5–4000
Mn 20–40,000 20–40.000
Cu 2,5–4000 0,5–4000
As 0,25–4000
Ni 2,5–4000 2,5–4000
Pb 2,5–4000 1–4000
Cr 1–2000 1–2000
Zn 25–40.000 5–40.000
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where Ci is the actual content of the pollutant in the 
soil, mg/kg, and Cf is the background content of the 
pollutant in the soil, mg/kg:

where Кc is the concentration factor of the i-th com-
ponent of pollution with values Кc > 1.5 and n is the 

(1)Kc =
Ci

Cf

,

(2)Zc =
∑n

i=1
Kc − (n − 1)

number of anomalous elements. Items with very low 
background content are not included in the count.

The gradations of the degree of soil cover con-
tamination are: Zc < 16, permissible; 16 to 32, mod-
erately hazardous; 32 to 128, hazardous; and ≥ 128, 
extremely hazardous (Methodical … 1982).

The obtained quantitative data were processed 
using software Microsoft Excel 2016, OriginPro 
8.5.1. Correlation analysis was performed using Sta-
tistica 6.0. Maps of total pollution of the soil cover 
were created using the program ArcGIS 9.0.

Results and discussion

The assessment of the degree of transformation of the 
main physical and chemical characteristics of soils 
for the territory of the Khannya-Nakyn interfluve is 
based on the calculated background parameters; the 
total sample is n = 175. The average geometric values 
n = 212 of soil samples of natural undisturbed land-
scapes outside the impact zone of mining and process-
ing operations are taken as the values of the regional 
background for the content of mobile forms of trace  

Table 2   Basic variational-statistical characteristics of the state 
of soils on the territory of the industrial site of the Nyurbinsky 
mining and processing plant

Index M ± m Lim Confidence 
interval at 
P = 0.05

V, %

pHwater 5.38 ± 0.12 4.5–7.1 5.2–5.6 13
Humus, % 5.6 ± 1.1 0.9–22.8 2.7–8.5 94
TN, % 13.1 ± 3.1 2.8–40.6 7.0–19.2 82
Physical clay 

(< 0.01 mm), 
%

22.1 ± 1.7 3.3–31.6 18.7–25.5 39

Table 3   The content of trace elements in the soils of natural landscapes of the Khannya-Nakyn interfluve outside the impact zone

*Below the limit of sensitivity

Index of horizons and depth, 
cm

Mobile forms of trace elements, mg/kg

Pb Ni Mn Cd Co Cr Zn Cu As

Background, n = 212 2.9 1.8 13.2 0.03 2.2 4.7 6.3 11.5 0.22
Turbic Gleyic Crysols (Thixotropic), P-3–08-H
AO 0–5(10) 4.2 ± 1.0 4.2 ± 1.1 56 ± 13 0.022 ± 0.005 2.3 ± 0.6 2.3 ± 0.5 3.7 ± 0.9 7.7 ± 1.9 0.22 ± 0.05
CR 5(10)-35(45) 2.8 ± 0.7 4.2 ± 1.0 39 ± 9 0.008 ± 0.002 2.0 ± 0.5 2.2 ± 0.5 6.4 ± 1.5 8.0 ± 1.9  < 0.05*
Cg 35(45)-∞ 3.0 ± 0.7 5.1 ± 1.2 39 ± 9 0.015 ± 0.004 2.3 ± 0.5 2.1 ± 0.5 6.9 ± 1.6 10.4 ± 2.5  < 0.05
Turbic Gleyic Crysols (Reductaquic), P-28–08-H
AO 0–6(14) 3.8 ± 0.9 2.6 ± 0.6 23 ± 6 0.023 ± 0.006 1.5 ± 0.4 2.2 ± 0.5 4.5 ± 1.1 4.8 ± 0.02 0.25 ± 0.06
Acr 6(14)-43(50) 2.1 ± 0.5 5.3 ± 1.3 42 ± 10 0.011 ± 0.003 2.4 ± 0.6 2.6 ± 0.6 6.8 ± 1.6 6.7 ± 1.6  < 0.05
CR g 43(50)-80(83) 2.3 ± 0.5 5.0 ± 1.2 47 ± 11 0.014 ± 0.003 2.5 ± 0.6 2.5 ± 0.6 7.5 ± 1.8 8.1 ± 2.0 0.07 ± 0.02
Cg 80(83)-∞ 1.4 ± 0.3 3.8 ± 0.9 44 ± 11 0.016 ± 0.004 2.2 ± 0.5 3.3 ± 0.8 6.2 ± 1.5 3.9 ± 0.9  < 0.05
Turbic Crysols (Reductaquic), P-33–08-H
AO 0–19(26) 2.1 ± 0.5 1.7 ± 0.4 56 ± 13 0.012 ± 0.003 2.6 ± 0.6 1.1 ± 0.3 3.3 ± 0.8 3.3 ± 0.8  < 0.05
CR 19(26)-40(45) 1.7 ± 0.4 3.8 ± 0.9 33 ± 8 0.014 ± 0.003 2.3 ± 0.5 1.5 ± 0.4 3.4 ± 0.8 5.7 ± 1.4  < 0.05
C 40(45)-∞ 1.6 ± 0.4 7.4 ± 1.8 40 ± 10 0.04 ±  ± 0.01 2.5 ± 0.6 1.7 ± 0.4 5.1 ± 1.2 9.5 ± 2.0 0.1 ± 0.02
Turbic Gleyic Natric Crysols (Reductaquic), P-34–08-H
A 0–40(42) 2.6 ± 0.6 1.5 ± 0.4 15.2 ± 3.4 0.006 ± 0.001 1.5 ± 0.4 1.7 ± 0.4 4.6 ± 1.1 2.1 ± 0.5  < 0.05
ELB 40(42)-61(72) 2.2 ± 0.5 3.4 ± 0.8 27 ± 7 0.008 ± 0.002 2.2 ± 0.5 2.1 ± 0.5 5.1 ± 1.2 2.9 ± 0.7  < 0.05
C g ┴ 61(72)-∞ 2.2 ± 0.5 4.7 ± 1.1 40 ± 10 0.019 ± 0.005 2.5 ± 0.6 1.8 ± 0.4 7.1 ± 1.7 4.7 ± 1.1  < 0.05
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elements (Legostaeva et  al., 2014; Gololobova & 
Legostaeva, 2019).

The soil cover of the territory is characterized mainly 
by an acidic reaction of the soil environment, and signif-
icant changes in the years of research due to an increase 
in the man-caused load are not observed (Table 2).

The humus content is characterized by a very high 
variation (V = 94%). High values of humus cause the 
presence of medium and slightly decomposed organic 
residues in the soil that is typical for the soils of the 
northern regions. The calculation of the ratio of car-
bon to nitrogen (C/N = 13) indicates a slight decom-
position of plant residues. The highest content was 
observed at points located directly in the zone of 
influence of industrial facilities (near the “Nyurbin-
sky” pipe quarry, dump №2, tailing storage facility 
№16, helicopter pad), which shows not so much the 
content of organic matter as the presence of a tech-
nogenic component in the soil. In conditions of soil 

contamination, they lose their natural features due to 
man-made suppression of soil formation processes. 
Therefore, the existing methods for determining 
humus reflect not so much the actual high humus con-
tent of soils as the total carbon content in them, which 
contains a significant technogenic component (fuel 
hydrocarbons, lubricating oils, etc.) (Prokhorova, 
2005). At the same time, no significant variations in 
the humus content were identified over the years of 
research.

The amount of physical clay is typical for a light 
loamy granulometric composition, with a predomi-
nance of fractions of fine sand (0.25 to 0.05 mm) and 
silt (< 0.001  mm). The concentration of many ele-
ments in the composition of fine-dispersed fractions 
of soils in both natural and man-made landscapes is 
usually 2 to 4 times higher than in the soil as a whole. 
This is mainly due to the absorption capacity of clay 
minerals (Motuzova, 2000).

Fig. 2   The dynamics of the content of the mean values of trace elements from 2007 to 2018
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The most active agents of contamination are 
mobile forms of trace elements that can pass from 
solid phases to soil solutions and be absorbed by 
plants (Mikhalchuk, 2017). The content of mobile 
forms of heavy metals in permafrost soil is not sig-
nificantly different by type (Table 3).

The genetic dependence of the composition of 
trace elements of soils on the composition of the 
underlying rocks is well known (Geochemical… 
1975). The natural background content of trace ele-
ments in soils, their distribution in the soil profile, the 
processes of accumulation and removal of chemical 
elements, and the ecological and geochemical state of 
the soil cover directly depend on the composition and 
properties of the underlying rocks. This mechanism 
is particularly clear in soils with a homogeneous thin 
profile, where there is no noticeable redistribution of 
soil matter (Basova et al., 2010). The intraprofile dis-
tribution of mobile forms of trace elements is char-
acterized by the presence of two maxima: biogenic 
accumulation in the upper layer of the soil with a sub-
sequent decrease down the profile and a second peak 
in the suprapermafrost horizon. As a rule, mobile 
forms of elements Mn, Zn, Co, Ni, Cd, As, and par-
tially Cu differ by biogenic accumulation in cryosols. 

Biogenic accumulation of Ni, Mn, and Cd is typical 
for the cryosols of the Khannya-Nakyn interfluve.

A different degree of correlation of mobile forms 
of heavy metals with humus content, pH values, and 
granulometric composition was identified, which 
characterizes the selectivity of the element (or group 
of elements) in combination with the main compo-
nents of the soil. A positive correlation of Co, As, 
and Mn with the content of humus, Cu and Cr, physi-
cal clay, and pH and a negative correlation between 
Pb and humus were determined. Fractions of fine- 
despersed dust and silt bind the largest number of ele-
ments – Zn, Ni, Cr, Cu, Pb, and As (Gololobova & 
Legostaeva, 2019).

The geochemical distribution series of chemical 
elements for the upper 0–20 cm soil layer in descend-
ing order of their average values is as follows:

Mn > Zn > Ni > Cu > Co > Cr > Pb > As > Cd.
During the period of active development of the 

fields of the Nakyn kimberlite field from 2007 to 
2018, there was a significant change in the composi-
tion of trace elements of soils with an increase in the 
concentrations of mobile forms Mn (17 times), Zn (5 
times), Cd (2.6 times), Cr (2 times), Co (1.8 times), 
and Ni (1.6 times). At the same time, there is a slight 

Table 4   The content of trace elements in the soils and grounds of an industrial site in the zone of impact of diamond mining facili-
ties

*Below the limit of sensitivity

Index of horizons and 
depth, cm

Mobile forms of trace elements, mg/kg

Pb Ni Mn Cd Co Cr Zn Cu As

Background, n = 212 2.9 1.8 13.2 0.03 2.2 4.7 6.3 11.5 0.22
Grounds of the quarry of the “Nyurbinsky” pipe, T-34 H
0–10 2.5 ± 0.8 14 ± 5 370 ± 130 0.031 ± 0.011 8.9 ± 3.0 32 ± 11 51 ± 17 11.4 ± 3.9 0.44 ± 0.15
10–20 2.4 ± 0.8 14 ± 5 300 ± 100 0.063 ± 0.021 9.7 ± 3.3 49 ± 17 64 ± 22 11.5 ± 3.9 0.49 ± 0.17
Turbic Crysols 10 m from the “Botuobinsky” pipe quarry, T-61-1H
AO 0–12 1.7 ± 0.6 8.5 ± 2.9 1600 ± 500 0.095 ± 0.032 5.3 ± 1.8 6.1 ± 2.1 31 ± 11 7.5 ± 2.5 0.21 ± 0.07
CR 12–17 2.4 ± 0.8 9.3 ± 3.2 130 ± 40 0.057 ± 0.019 4.7 ± 1.6 4.9 ± 1.7 16 ± 6 4.3 ± 1.5 0.27 ± 0.09
C┴ 17–37 1.6 ± 0.5 3.2 ± 1.1 43 ± 15 0.017 ± 0.006 1.8 ± 0.6 4.9 ± 1.1 9.6 ± 3.2 4.0 ± 1.4  < 0.05*
Turbic Crysols 5 m from the dump №1, T-35-1H
AO 0–2(5) 1.1 ± 0.4 30 ± 10 8830 ± 3002 0.13 ± 0.04 7.4 ± 2.5 3.7 ± 1.3 46 ± 16 5.3 ± 1.8 0.11 ± 0.04
CR 2(5)-40 1.1 ± 0.4 3.2 ± 1.1 39 ± 13 0.011 ± 0.004 1.2 ± 0.4 3.8 ± 1.3 7.8 ± 2.7 1.8 ± 0.6  < 0.05
C ┴ 40–71 1.1 ± 0.4 3.9 ± 1.3 87 ± 30 0.012 ± 0.004 2.3 ± 0.8 5.9 ± 2.0 10.9 ± 3.7 1.6 ± 0.5  < 0.05
Turbic Crysols 1 m from the dump №2, T-19-1H
AO 0–7 1.4 ± 0.5 8.0 ± 2.7 920 ± 310 0.103 ± 0.035 4.0 ± 1.4 5.6 ± 1.9 26 ± 9 8.7 ± 3.0 0.29 ± 0.10
CR 7–12 2.1 ± 0.7 21 ± 7 105 ± 36 0.058 ± 0.020 3.2 ± 1.1 4.9 ± 1.7 10.4 ± 3.6 11.7 ± 4.0 0.25 ± 0.09
CR 12–32 2.1 ± 0.7 9.1 ± 3.1 170 ± 60 0.036 ± 0.012 2.4 ± 0.8 4.1 ± 1.4 21 ± 7 8.9 ± 3.0 0.13 ± 0.04
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decrease in the amount of Pb, and the content of Cu 
and As in the soils remains almost the same (Fig. 2).

Today, the soil cover of the industrial site is char-
acterized by polyelement contamination. As many 
researchers note, the specificity of the elemental com-
position of the soil cover is related, on the one hand, 
to the metallogenic features of the deposit. On the 
other hand, it is likely that heavy metals will enter as 
part of dust particles formed during drilling and blast-
ing operations in the quarry, loading operations, ore 
transportation, wind erosion of the surface of dumps, 
tailing storage facilities, and open-pit sides of the 
quarry (Belosheikina et al., 2020).

According to the results of the research 2007 to 
2014, it was found that the most active mobile forms 

are Pb, Mn, Cu, Ni, Cr, Zn, Cd, Co, and As. At the 
same time, Cr, Ni, and Co are elements that are typo-
morphic to kimberlites, and the accumulation of Mn 
and Cu reflects in general the geochemical specific 
nature for the soils of the entire territory of the west-
ern Yakutia (Vorobiev, 2001, 2004; Legostaeva et al., 
2014). Geochemical spectra based on the concen-
tration coefficient (Cs) revealed the degree of trans-
formation of the soil elemental composition during 
the observation period. Soils of technogenic land-
scapes (quarries, dumps, tailings storage facilities, 
and embankments for various purposes) are char-
acterized by the following trace element spectrum: 
Mn28.0 → Zn8.0 → Ni7.7 → Cr6.8 → Co4.2 → As2.0. At the 
same time, the variability of concentration coefficients 

Table 5   The content of trace elements in the soils and grounds of the industrial site in the zone of impact of ore concentration facili-
ties

*Below the limit of sensitivity

Index of horizons 
and depth, cm

Mobile forms of trace elements, mg/kg

Pb Ni Mn Cd Co Cr Zn Cu As

Background, n = 212 2.9 1.8 13.2 0.03 2.2 4.7 6.3 11.5 0.22
Grounds of tailings storage facilities processing plant No.16, T-31-1H
0–3 2.6 ± 0.9 12.7 ± 4.3 1680 ± 570 0.12 ± 0.04 9.8 ± 3.3 47 ± 16 38 ± 13 11.1 ± 3.8  < 0.05*
3–20 1.0 ± 0.3 4.7 ± 1.6 58 ± 20 0.019 ± 0.006 3.9 ± 1.3 7.3 ± 2.5 8.9 ± 3.0 8.1 ± 2.8  < 0.05
30–40 0.49 ± 0.17 6.9 ± 2.3 130 ± 40 0.015 ± 0.005 3.5 ± 1.2 11.3 ± 3.8 10.9 ± 3.7 8.8 ± 3.0  < 0.05
50–52 0.66 ± 0.22 6.2 ± 2.1 69 ± 24 0.039 ± 0.013 4.0 ± 1.4 9.3 ± 3.2 9.7 ± 3.3 7.6 ± 2.6  < 0.05
Turbic Gleyic Crysols (Reductaquic) 30 m from processing plant No.15, T-33 H
AO 0–3 1.2 ± 0.4 22.7 ± 7.7 2400 ± 820 0.102 ± 0.035 7.6 ± 2.6 6.5 ± 2.2 59 ± 20 6.6 ± 2.2 0.22 ± 0.07
ABcr 3–10(16) 1.1 ± 0.4 4.5 ± 1.5 796 ± 270 0.043 ± 0.015 19.9 ± 6.8 2.4 ± 0.8 9.2 ± 3.1 2.1 ± 0.7 0.07 ± 0.02
CRg 10(16)-47(58) 1.1 ± 0.4 2.6 ± 0.9 78 ± 26 0.035 ± 0.012 5.4 ± 1.8 2.4 ± 0.8 5.2 ± 1.8 2.4 ± 0.8  < 0.05
Cg 47(58)-62 0.9 ± 0.3 2.7 ± 0.9 13 ± 4 0.011 ± 0.004 0.8 ± 0.3 2.2 ± 0.7 3.6 ± 1.2 3.4 ± 1.1 0.07 ± 0.02

Table 6   Correlation 
analysis between heavy 
metals and soil properties

*The correlation is 
significant for a confidence 
level of 0.01

pH Humus Pb Ni Mn Cd Co Cr Zn Cu As

pH 1  − 0,51 0,02 0,35  − 0,13  − 0,10 0,37 0,76* 0,28 0,46 0,30
Humus 1 0,10  − 0,03 0,54* 0,57*  − 0,14  − 0,38 0,27  − 0,17  − 0,30
Pb 1  − 0,11 0,50*  − 0,04  − 0,12 0,11 0,08 0,24 0,07
Ni 1 0,35 0,31 0,31 0,21 0,47* 0,22 0,34
Mn 1 0,47*  − 0,06  − 0,19 0,46* 0,03  − 0,17
Cd 1 0,18  − 0,15 0,47* 0,04  − 0,10
Co 1 0,24 0,18 0,07 0,13
Cr 1 0,38 0,50* 0,42
Zn 1 0,21 0,27
Cu 1 0,30
As 1



Environ Monit Assess         (2021) 193:337 	

1 3

Page 9 of 13    337 

is very wide. Soils that fall into the zone of direct 
impact of man-made objects are characterized by sur-
face accumulation of trace elements of the same spec-
trum (Tables 4 and 5).

If the soil profile is preserved, the accumulation 
horizons are AO, ABcr, and CR. Depending on the 
amount of soil organic matter, the degree of decom-
position and the scale of cryoturbation occurrence in 
the form of, for example, frost cracking, mobile forms 
Mn, Zn, Ni, Cr, Co, and As can migrate along the soil 
profile to a depth of 40 to 50 cm.

As reference points of technogenic load, the sites 
characterized by a significant level of soil contamination 
are selected (Table 6). Analysis of trace element spectra 
over the years of research showed a significant increase 
in the concentrations of mobile forms and expansion of 
the trace element range. By 2018, active accumulation 

of mobile forms of Mn, Zn, and Ni with abnormally 
high concentration coefficients is observed in the com-
position trace elements of the soil cover of the industrial 
site of the Nyurbinsky mining and processing plant.

There are noticeable positive correlations (P < 0.01) 
between the pairs, which indicate a synergism between 
the above groups; i.e., an increase in the content of one 
trace element leads to an increase in the concentration 
of the other (Table 7).

Manganese and zinc have the largest number 
of pairs, which explain their presence in the first 
rows of all trace element spectra that characterize 
both the soils of the entire Khannya-Nakyn inter-
fluve and technogenic-transformed soils of the 
industrial site, as well as soils of technogenic land-
scapes. In addition, it was found that the amount of 
organic matter affects the content of mobile forms 

Table 7   Characteristics of the trace element composition of soils in key areas of the Nyurbinsky mining and processing plant indus-
trial site according to research data from

*No background parameters exceeded, Кк ≤ 1.5

No. of obser-
vation point

Trace element spectrum by year of observation

2007 2011 2014 2018

In the impact zone of dead rock dumps
19 Mn4.3 → Ni2.9 → Co2.4 Mn13.3 → Ni4.8 → Pb2.7 Mn137.2 → Ni26.8 → Co12.9 → Cd3.4 → 

As2.3 → Zn1.9

Mn69.7 → Ni4.5 → Zn4.1 → C
d3.4 → Co1.9

35 Mn2.6 → Ni1.9 Mn57.3 → Ni5.4 → Co3.8 → Pb3.6 → 
Zn3.2

Mn85.1 → Co3.2 → Ni2.5 Mn669.4 → Ni16.11 → Zn7.3 → 
Cd4.2 → Co3.4

In the impact zone of tailings storage facility of processing plant
11 Mn8.7 Mn24.2 → Zn10.7 → Cd9.1 → Co5.2 → 

Ni2.0 → Pb1.7

Mn20.0 → Ni3.5 → Co3.0 → Cd2.2 → Z
n1.5(As1.5)

Mn290.4 → Zn5.4 → Ni3.8 → C
o3.5 → Cd3.0

16 Mn6.8 → Ni2.3 Mn20.6 → As1.5 Mn116.2 → Ni6.1 → Zn3.3 → Co3.1 
→ Cd3.0

Mn186.8 → Zn4.7 → Ni2.0

14 Mn10.6 → Co5.3 → Ni4.8 → Cd2.0 Mn44.7 → Ni4.1 Mn19.6 → Ni7.0 → Co3.7 → Zn2.2 → C
r2.0 → Cd1.5

Mn141.4 → Zn2.5

31 Mn3.5 → Co1.8 → Ni1.7 Mn6.6 → Ni3.9 → Co2.5 → Cr1.6 Mn5.0 → Ni3.5 → As2.1 → Co1.8 Mn127.0 → Cr10.0 → Ni7.2 → Z
n6.0 → Co4.6 → Cd4.1

In the impact zone of quarries
34 -* Mn8.0 → Pb3.3(Co3.3) → Ni2.9 → Zn2.3 Mn7.1 → Ni1.6 Mn27.9 → Zn8.0 → Ni7.7 → C

r6.8 → Co4.2 → As2.0

61 - - Mn22.2 → Ni2.7 → Co1.6 Mn119.1 → Zn4.9 → Ni4.8 → C
d3.2 → Co2.5

Table 8   Area and pollution 
level of soil cover on the 
territory of the industrial 
site of Nyurbinsky mining 
and processing plant

Pollution category Level of indicator of Zc 
total pollution

Area by research years, km2

2007 2011 2014 2018

Permissible less 16 61.0
Moderately hazardous 16–32 210.0 305.0 - 104.9
Highly hazardous 32–128 45.0 1.44 122.0 260.9
Extremely hazardous over 128 - - 18.2 51.6
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of manganese (r = 0.54). A fairly close relationship 
is identified between the pH and the concentration 
of mobile forms of chromium (r = 0.76) and cop-
per (r = 0.46). At the existing pH values, chromium 
and copper are inert; i.e., they almost completely 
precipitate (Sokolova,  2006), what can be associ-
ated with the absence of these elements in the trace 
element spectra that characterize soils, despite the 
fact that the eluvium-deluvium of the Nakyn kim-
berlite field contains Cr and Cu at very high levels, 
forming a large area of anomalies particularly in 
the zones of tectonic faults (Makarov, 2010; Gorev 
et al., 2011; Legostaeva et al., 2014; Gololobova & 
Legostaeva, 2019).

Using the Saeta formula, it is possible to estimate 
the degree of total soil contamination (Zc) by sev-
eral trace elements and heavy metals. According to 
research data from 2007, the territory of the industrial 
site is characterized mainly by a moderately danger-
ous situation in terms of the content of mobile forms 
of trace elements, which was approximately 210 km2 
(Table 8). At the same time, about 10% of the terri-
tory belongs to the highly dangerous category of pol-
lution and covers 45 km2.

In 2011 there was an increase in the conditional 
boundaries of the areas of soil contamination. The 
ecological and geochemical situation still corre-
sponds mainly to the category of moderate hazard 
(~ 305 km2) if there are areas with a highly hazardous 
degree of contamination (~ 1.44 km2).

According to research in 2014, the ecological and 
geochemical situation on the territory of the Nyurbin-
sky mining and processing plant industrial site is 
characterized mainly by a highly dangerous level of 
pollution in terms of Zc. There was an increase in 
the area of highly dangerous pollution in comparison 
with the data of 2011 by 120 km2. In addition, three 
areal and two point high-contrast anomalies were 
recorded with an extremely dangerous level of soil 
contamination, the total conditional area of which is 
about 18.2 km2.

Research in 2018 allowed us to localize and con-
firm the increase in the area of soil contamination on 
the territory of the Nyurbinsky mining and processing 
plant industrial site. The ecological and geochemical 

situation has changed significantly with the predomi-
nance of a highly dangerous category of pollution, 
which occupies 260.9 km2 (Fig. 3). There is a spatial 
increase in the contrast of the identified anomalies 
that characterize the active accumulation of mobile 
forms of trace elements in the surface organogenic 
horizons of soils. The increase trend has a north-west 
and south-east direction. It should be emphasized that 
along with the overall increase in the area of pollu-
tion, the absolute values of the concentration coeffi-
cients and, accordingly, the total indicator of pollu-
tion have increased. Mn, Zn, and Ni are Zc-forming 
elements.

Conclusion 

The legacy of industrial development has left many 
polluted soils (Krumins et  al., 2015). And in this 
aspect, the Nakyn kimberlite field is a kind of model 
polygon, allowing to assess the level of technogenic 
transformation of the ecosystem over more than 
11-year period of intensive development of diamond 
deposits in the cryolithozone.

The data obtained from the analysis of the geo-
ecological situation contribute to the development 
of general ideas that not all contaminated or anthro-
pogenic soils function equally. If the morphological 
integrity of the soil profile is preserved, there are no 
significant changes in the main geochemical indica-
tors in the soil cover. Exceptions are areas that have 
been directly affected as a result of land acquisition 
and the formation of new technogenic-transformed 
landscapes (Pouyat et al., 2006).

Research in 2018 allowed us to localize and con-
firm the increase in the area of contamination of the 
industrial site. The pollution is especially contrasted 
by the characteristics of the soil cover. The area of 
geographic ranges characterized by an extremely dan-
gerous category of soil contamination increased by 3 
times compared to 2014.

Analysis of the concentration coefficients showed 
that the soil cover is intensively accumulating man-
ganese, zinc, and nickel, in areas that cover the 
main objects of pollution. The geochemical series 
of distribution of chemical elements in descending 
order of their average values is compiled: Mn > Zn 
> Ni > Cu > Co > Cr > Pb > As > Cd. The synergistic 
interaction of manganese with zinc, cadmium, lead, 

Fig. 3   Map scheme of the total pollution of the soil cover of 
the territory of the Nyurbinsky mining and processing plant, 
by 2018 years of research

◂
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as well as zinc with nickel and cadmium, caused by 
stress due to excessive concentrations of heavy met-
als, was revealed.

In grounds and soils that have been subjected to 
man-made impact, there is a redistribution in the 
composition of mobile forms of trace elements. The 
elements typomorphic to kimberlites are in the first 
place. And also in general, the percentage of mobile 
forms of almost all certain trace elements increases. 
Therefore, if the soil is disturbed, the integrity of 
the soil profile is failed, the upper organic hori-
zon is removed, mineral part of the soil profile is 
“exposed”, and there is a change in geochemical 
conditions; as a result, most of the trace elements 
transform into a mobile state – water-soluble forms 
and acid-soluble forms. That is, it becomes more 
accessible to plants, including wild plants, which 
are directly consumed, soluble in water, what cre-
ates tension in the overall environmental situation 
on the territory of the impact of the mining and pro-
cessing plant. Similar processes occur in the case 
of surface filling, the exposure of soil-forming rock 
material to the surface, which are mainly character-
ized by the predominance of finely dispersed clay 
fraction and an increased content of CR-Ni-Co and 
Cu-Mn associations; this is manifested in high con-
centrations of mobile forms of these elements.
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